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We present a new iterative Chebyshev spectral method for solving
the elliptic equation V- (& Vu) = f. We rewrite the equation in the form
of a Poisson’s equation Viu=(f—Vu-Vo)/e. In each iteration we
compute the right-hand side terms from the guess values first. Then we
solve the resultant Poisson equation by a direct method to obtain the
updated values. Three numerical examples are presented. For the same
number of iterations, the accuracy of the prasent method is about 6-8
orders better than the Chebyshev spectral multigrid method. On a
SPARC Station 2 computer, the CPU time of the new method is about
one-third of the Chebyshev spectral multigrid method. To obtain the
same accuracy, the CPU time of the present method is about one-tenth
of the Chebyshev spectral muitigrid method,  © 1994 Academic Press, Inc.

1. INTRODUCTION

There have been many papers describing the solution of
elliptic equations by Chebyshev spectral methods. Zang
et al. [12, 137 solved the 2D elliptic problem with spectral
multigrid methods. They used an incomplete LU decom-
position technique to solve the finite difference (FD) pre-
conditioning equations and gave several examples. Brandt,
Fuiton, and Taylor [1] proposed several modifications to
the methods presented by Zang ef al. for periodic problems.
Deville and Mund [3,4] discussed the Chebyshev
pseudospectral algorithm for second-order elliptic equa-
tions using finite element (FE) preconditioning. They com-
puted the spectral radius of the elliptic solvers with FID and
FE preconditioning and for different interpolation elements.
Canuto et al, [2, Chap. 5] and Zang ef al. [14] gave com-
prehensive discussions and reviews of the Chebyshev spec-
tral methods in solving elliptic equations. In this paper we
present a new iterative Chebyshey spectral method for
solving the elliptic equation V- (¢ Vu) = f. In Section 2, we
present the main idea of the new method. In Section 3,
we discuss how to solve the Poisson’s equation by the
Chebyshev collocation method, In Section 4 we present the
formulation of the new method for 1D and 2D elliptic
equations. In Section 5, we present numerical examples. In
Section 6, we discuss the results.
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2. A NEW ITERATION METHOD FOR SOLVING
THE ELLIPTIC EQUATION V- (6 Vi) = f

We now censider the elliptic problem

V(eVu)=f in £, {la)

u=g onl, (1b}
where @ is the domain, I' is the boundary, f and g are
known functions, and ¢=a>0. In this paper all the
problems will be considered in a standard Chebyshev
domain, that is,

{x{—-1<x<l1}
{(x, M —1<x, y<1}
{x, 2)] —l<x, yz<1}

for 1D problems,
2= for 2D problems,

for 3D problems.

If Vo exists in the whole domain, we can rewrite Eq. (1a) in
the form of a canonical Poisson’s equation

_f—Va'-Vu
-

Vi (2)

Then we solve the problem by the following procedure:

1. For a given guess of u, compute the right-hand side
of (2).

2. Solve the resultant Poisson’s equation by the direct
method to be discussed in the next section.

3. Take the solution obtained as new guess and repeat
the above process until the notms of the differences of u
between two successive iterations satisfy an appropriate
convergence criterion.

Since o is given, Vo can be computed analytically or numeri-
cally. However, Vu has to be computed numerically.
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3. SOLVING THE POISSON’S EQUATION BY
CHEBYSHEYV COLLOCATION METHODS

With the new method we need to solve a Poisson problem
in each iteration. In this section, we discuss how to solve the
Poisson’s problem

Viu=h in 2,

on I,

(3a)

u=known (3b}
by the Chebyshev collocation method, where / is a known
function. There are many papers describing how to solve the
Poisson’s equation by the Chebyshev spectral methods.
Haidvogel and Zang [16] used the r method to solve the
2D Poisson’s equation in a square with homogeneous
boundary conditions and proposed both alternating-direc-
tion implicit iteration and matrix-diagonalization methods
to solve the coeficient equation system. Haldenwang e af.
[17] extended Haidvogel and Zang’s 2D method to the 3D
Helmbholtz equation with general inhomogeneous boundary
conditions. In the t method, the equation system is derived
for the Chebyshev coefficients. In order to build the
equation system we have to apply a forward Chebyshev
transform to 4 to convert the quantity from physical space
to transformed space. After obtaining the Chebyshev
coeflicients of u, we have to apply an inverse Chebyshev
transform to convert the quantity from transformed space
to physical space. In the collocation method, we require
that Eq. (3a) be satisfied exactly at the interior points and
solve the equation system in physical space directly. No
Chebyshev transforms are required. Therelore, it is simpler
and faster than the r method. Besides, in the r method we
need to know the values of k& at the boundaries {which are
not required in the collocation method} in order to obtain
the Chebyshev coefficients of the source function. This
makes the problem somewhat overdetermined. When the
boundary conditions and the right-hand side terms are self-
consistent, the t method works well. When the boundary
conditions are given arbitrarily (as happened when using
the influence matrix method to solve the multidomain equa-
tion system [[157), because of a lack of consistency, the ©
method does not work. In contrast, the collocation method
works well because it 1s not overdetermined. Furthermore,
the coilocation method can be used to solve more general
equations. For simplicity, we use the same degree N of
Chebyshev polynomials in each coordinate direction. The
Chebyshev grid is

-=y,-=z,-=cosE (i=

¥ N 0, .y N)

X

{4)

We will discuss 1D problem in detail to illustrate the main
ideas and then generalize them to 2D and 3D problems.
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3.1. The First and Second Derivative Matrices

Let
¢,
T2

The first-order derivative matrix [d!"] is given by [13]

i=1,.,N-1,
i=0 or N.

for .
for (3]

C=D™ i ion e
j— \Isj\ » J‘ l!
Cilx,— j)
x
Igi=j<N-1,
2(1—x3%)’
A= i ()
e i=j=0,
AN+
6+ ) i=j=N.

The second-order derivative matrix [d '] is given by [8]

( (“I)H-J(x: +x;x;,—2)

CAl—xNx,—x;)°

1<i<N—1, O0O<j<N,;
(N2—1)1—x3)+3
3(1—x2)?
1<i=j<N—1,

{1y 2[(2N2+1)(1—x)—6}
3C(1—x,)°

i=0, 1< /<N,

(—l)N+f2[(2N2+1)(1+xj)—6]

Ci{l +x)?

0<jgsN-—1,

J# i,

4 =

i

(7)

i=N,
Nt—1
15’
k=j=0,N.

It is casy to verify that
d (2)

(N iHN— 1)

=d?. (8)
1f the discrete values u, = u(x,) are given, the first- and the
second-order derivatives of u(x) at the grid points can be
computed by

u‘”— Z df,”u,, (9)
u = Z dPu,. (10)
=0

Formulas () and {10} can be easily extended to 2> and 3D
cases,
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3.2. The 1D Problem
In the 1I> case, Eq. (3a) becomes

d’u
el (11)
From (7), (10), and {11), we obtain the equations
Z dPuy = (i=1,.,N=1). (12)

From (3b) u, and u, are known. Moving the known terms
on the left-hand side of (12) to the right-hand side, we
obtain

Z dP,=s,  (i=1,.,N-1), (13)

where
dP=d (LI=1,.,N-1) (14)

and
si=h—dPug—d'Buy. (15)

System (13) can be solved by many different methods such
as Gauss elimination or Gauss-Seidel iteration. For a better
understanding of the 2D and 3D problems to follow, we
solve system {13) by the matrix diagonalization method.
The matrix [Eﬁf’] can be factorized as

d(2J._ Z o, -1

I}J‘jf
=1

(I<i jsN-1),  (16)

where [a;]isan (N —1){N — 1) matrix whose ith column is
the eigenvector corresponding to the ith eigenvalue 4, of
matrix [d‘z’] and [a7'] is the inverse of [a,]. Thereforc

i={

i#l (7)

N—1 1
Z LT ;! = Z aijlaﬂ=6i!={0’

i=1
All the eigenvalues are real, negative, and distinct [6]. The

condition number of the matrix [d{?'] is O{N*). Because of
(8) we have

Ayy—p=(—1)"** g, (18)
and

:(_l]N"'H'lafl_ (19)

—1
Xiw—i i

581/113/2-5
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We can use (18) and (19) to reduce the amount of computa-
tion. Substituting (16} into (13}, we obtain

N—-1~N—-1

Z z djjide,;luf=Si ey N_ 1)' (20)
I=1 j=1

We then multiply the ith equation of (20) by «! and sum
over i to obtain

N-1 N 1 V=1
Z DYDY duﬂjdﬂ = Z A (21)
i=1 {=1 j=1 i=1
Let
N—1
w,= Y wy iy {22)
i=1
and
N-—1
b= Z ca:;llsr (23)
i=1
From (17), (21}, (22), and (23), we obtain
‘ .
Z B Wi =1, (24)
f=1
Therefore,
Won = Lyl o, (25)
From (22)
N—1
uj= a’_}mwm (26}

The above solution process can be summarized in two steps:

b1 3 a

(i=1,.,N—1), (27)

—1
Yy Sy

Z (I=1,.,N—1) (28)

As pointed out by Canuto et al. [2, p. 1357, this strategy is
an application of the tensor product approach devised by
Lynch, Rice, and Thomas [7] for (finite-difference
approximation to Poisson’s equation. The above algorithm
can be extended to 2D and 3D problems easily, Because the
3D formulation is very similar to the 2D, we present the 2D
formulation only.

3.3. The 2D Problem
In the 2D case, Eq. (3a) becomes

6‘214 &u

% 62 =hix, y).

(29)
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Analogous to the 1D case, we obtain the equation system

N -
Z d\Puy+ E d{Puy
I
=h; (i j=1,.,N—1}, (30)
where
srj=hij_dj'g)HOj_df‘if)uNj—d}é)ur'O_d}i‘)uiN'
We solve system (30) using the following two steps:
N—1 N1
T T Z Y ar' Sm
fi=1 m=1
(ls.].:l’---’N_l)! (31)
N—-1KN—-1
=2 ¥ adnwy, (m=1.,N-1). (32)

i=1 j=1

4, SOLVING THE ELLIPTIC EQUATION

In this section, we present the formulation for solving the
elliptic boundary value problem (1} in 1D and 2D cases. As
a preface, we briefly introduce the spectral radius and con-
vergence rate. Then we estimate them for the 1D problem.

4.1. The Iteration Matrix and Its Spectral Radius

Let [g;] be an NxN matrix with eigenvalues 4,
(1 i< N). The spectral radius of the matrix [ g,] is defined
as [10]

p(lg;])= max |4, (33)
1gighN
Suppose we sclve the equation
N
=S5 Z (i=1,..,N) (34)
by the iteration relation
N
ubtV=5.+ 3% g,u® (35)
r=1
Subtracting (34) from {35) we obtain
N
wf D —u= 3 g(ul —u,). (36)
r=1
Equation {36) implies that the error e!*’ = u{*! — u, obeys
N
et =Y g el (37)

r=1
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Suppose that

N
eEO]= Z cr(ér)is

r=1

(38}

where (£,),1s the /th element of the r th eigenvector of matrix
[g,] and the ¢,’s are constants. Then after & iterations the
error is given by

N
(k) k=1 _
=T gyel~U= .

p=1

~ z ¢ A e (39)

When & becomes large enough, e’ will be dominated by the
largest cigenvalue(s). That is, the error e!*) is determined by
the spectral radius of the iteration matrix, The convergence

rate & is defined as [2, p. 138]
#=—Inp. (40)

The reciprocal of # measures the number of iterations
required to reduce the error by a factor of e. The larger the
convergence rate is the fewer iterations that are required to
obtain a solution to a given accuracy.

4.2, The 1D Problem
In the 1D case, Eq. {1a) becomes

d du .
E(“Z)tf in . (41)
From (2), (9), and (10), the discrete form of (41} is
N 2)
( (1J
Z = GUZO d|
(i=1,.,N—1) (42)

After moving the terms containing the known boundary
values, u, and u,, to the left-hand side of Eq. (42), we
obtain the final equation system,

1N 1
E dPu=5,~2F A0y, (i=1,.,N=1), (43)
tj 1
where
_f: a; 58] (1) (2} (2
si=t = (diuo +diyuy) —d iy~ dFuy,  (44)
AV =d (i j=1,.,N-1), (45)

and 4!V is defined by (6). From (43) the jteration formula
for the present method is

WD = — 2 g ul®, (46)

i=1
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where

and the iteration matrix is

8= — Z [4®] —16 d“’.

r=1

(47)

From (47) we can find the spectral radius of [ g, ]. The itera-
tion matrix is model-dependent, as is the spectral radius. We
can compute the spectral radius for 2D and 3D problems in
a similar way.

Now we give an estimate of the convergence rate of the
1D problem. We exchange the order of the matrices on the
right-hand side of (47) to obtain another matrix

(r}

— Z d“’[d‘”]"

(48)

The matrices [ g, ] and [g¢;] have the same eigenvalues [11,
p- 547 and therefore the same spectral radii. Let

Z {1)[d(2)]71
Then
at™
qu - 7, by.

Numerical experiments show that the spectral radius of the
matrix [b,] is bounded by 1/x. Since the matrix [o'*Y/g,] is
diagonal, the spectral radius is the maximum absolute value
of its elements. From [ 10, p. 53, we have

C ! d1
(e 2

Therefore, the spectral radius of the iteration matrix [g,]is

pllg; D <p

dlne

dx

(49)

1
p([g.-,-])sg max
From (40) and (49), the convergence rate # for the 1D
problem is bounded by
). (50)

ding
dx

R=Inn—In (max
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4.3. The 2D Problem
In the 2D case, Eq. (1a) becomes

d cu d cu .
5w ) lon) -0 me

where 2= {(x, y)| % <x <X, Ja<y<j,}. We rewrite
Eq. (51) as

(51)

52&' azu f u(t)g(x]_u(y) (¥)
T3t+t33
ox* ay? a

(52)

Similar to the derivation for the 1D problem in the previous
section, from (3), (8), and (9), we obtain a system of egua-
tions

N—t _ N-1
2 diuy+ Y diuy,
=1 =1
ﬁ(x)N 1 (yJN L
LS A Pu, - Y 30w,
Ty ;=1 Ty =)
(O<i, j<N), (53)
where
1
sy= 5 U= oo, + d )
m(dmu,o'i‘dj}v}um)]
- (dg}uoj dgi')uNj) - (d}%)“io + dj‘,%»i)uiN)‘ (54)

The formulation for the 313 problem is similar to the 2D
case and it omitted for brevity.

5. NUMERICAL EXAMPLES

Three examples are now presented. In each example we
compute the solution by both the present method and the
spectral multigrid method presented by Zang et af. {12]. In
the multigrid method, a simple V' cycle with one relaxation
on each grid level is used. The correction vector is obtained
by solving a finite difference preconditioning equation
system.

The convergence rate of any iteration process is charac-
terized by the L, or L, norms of the difference of the values
of the unknowns between two successive iterations. In the
following examples, we will plot the L _ norms.

The accuracy of the approximation {compared with the
exact solution) is determined by the degree of Chebyshev
polynomials used as well as the number of iterations. For
comparison we also present the error nerms and CPU time
after a number of iterations for both the new iteration
method and the multigrid method presented by Zang et al.
for each example.
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All the computations were performed on a SPARC
Station 2 computer with double precision.

ExampLE 1. In Eq.(la), we take
ol(x)=1+ex’,

for the exact solution

u(x) = cos{x?).

L N= N
Ay S
—_———— N= 8 \
A Y ",
—— N=18 S
....... N =32 AN
Y
— N =32CSMG \ AN
\
15 AN
L [Nl
5 10 15

Number of iterations

_______ N =32 AN .
\. ™~
N =32 CSMG NN
\.
—15— \-\\ .
| I yr
5 114} 1

Number of iterations

FIG. 1. The L, norms of the differences of u between two suceessive
iterations of Example 1: (a)e=0.2;(b)e=1.
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025 —

o20|.

0.15 |-

Spectral radius
-~

0.05 |

0.00 i { |

FIG. 2. The spectral radius of the iteration matrix for Example 1.

The boundary conditions and f{x) are given accordingly.
Figure 1 shows the L norms (|e_,,|) of the differences of u
between two successive iterations for the cases N =4, 8§, 16,
and 32 for the present method and that for Chebyshev
spectral multigrid methods (CSMG) on the N =32 grid. In
Fig. 1, (a) is for e =0.2 and (b) is for ¢=1. Figure 2 shows
the spectral radius for ¥ =4 to 16. Table I shows the L; and
L, error norms (comparing with the exact solutions) and
the CPU time after nine iterations for both the present
method and the spectral multigrid methods.

For this 1D example, the maximum absolute value of
dlin a/dx is \/E From (50), the estimated convergence rate
of the iteration matrix [ g,] is 2’ =1In 7 —0.51n & There-
fore R*1>1.9494 for e=0.2 and R >1.1447 for = 1.
From Fig, 5.2, the asymptotic value of the spectral radius of
the iteration matrix is 0.0325 for e =0.2 and 0.125 fore = 1.
The real convergence rate is 9% =3.4265 for ¢=0.2 and
@ = 2.0794 for £ = 1. The real values of the convergence rate
are larger than the estimated bound. This can be explained
as follows. The estimation {50) is based on an inequality

TABLE I

The L, and L, Error Norms of Example 1 after Nine Iterations
ona N=32Grid

€ Present method Spectral multigrid method
L, 0.2 6793 x10°" 6.129 x 10~%
Le 0.2 2761 x 10~ 1250 % 107
L, 1.0 3194 x 1010 1.047 x 10~
L, 1.0 2728 %1071 1.958 x 10~
CPU (s} 0.08 0.11
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condition. If 4 In o/dx is a constant, the equality sign is valid 0.25
in (50). Only in this situation is the estirate accurate.
Exampii 2. In Eq. (1la) we take
0.20 ':_\
Y
o(x, y)=1+8(x2+y2) ‘\
Y
\
for the exact solution, 5018 \
b=} - L)
o
u{x, y)=sin(x cos x} sin(r cos y}. -
F
o0}
0.05 { -
0.00
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"ngolemaxl

-10

Number of iterations

FIG. 4. The spectral radius of Example 2.

The boundary conditions and f(x, y) are given accordingly.
Zang er al. [12] solved this example by the spectral multi-
. grid methods. Figure 3 shows the L, norms of the differen-
15 N ces of u between Iwo successive iterations for the cases

e N =4, 8, 16, and 32 for the present method and that for the
spectral multigrid methods on the N =32 grid. In Fig. 3, (a)

is for £ = 0.2 and {b) is for £ = 1. Figure 4 shows the spectral
radius for N =4 to 16. Table 1I shows the L, and L, error

norms (comparing with the exact solutions) after nine
iterations as well as the CPU time. Probably due to the
difference in programming and the selection of relaxation
parameters, in Table IT the L, error norms (1.529 x 10~%)
for the muitigrid methods is better than that (3.16 x 1077)
presented in [12, p. 499].

Examrre 3. In Eq. (1a) we take
E a(x, yz)=1+e(x*+ y* 4+ 27)
©
<
2 ol e N= o4 \:\\ TABLE H
————_ N=18 SN . .
\\ e The L, and L, Error Norms of Example 2 after Nine Iterations
—— N=18 \ . on a 33 x 33 Grid
....... N = 32 “ ~
N = 32 CSMG X, \\ £ Present method Spectral multigrid method
—18}— A
[ [ Sy L, 02 2816 %1077 1708 % 10
5 10 15 Lo 02 1.525x 10~ 42 8.399 x 10~
Number of iterations L, 1.0 1.329x 107 '° LIT2x 10~
. L, 1.0 1.938 x 10~ 6.113x10-%
FIG. 3. The L_ norms of the differences of u between two successive CPU (s) 0.68 228

fterations of Example 2: (a)e=02; (b)e=1.
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for the exact selution,
u(x, ¥, z) =sin(x + y* + 2°).

The boundary conditions and f(x, y, z) are given accord-
ingly. Figure 5 shows the L norms of the differences of u
between two successive iterations for the cases N =4, 8, 16,
and 32 for the present method and that for the spectrail mul-
tigrid methods on the N =32 grid. In Fig. 5, (a)isfore=0.2
and (b) is for ¢ = 1. Table Il shows the L, and L error
norms (comparing with the exact solutions) after nine
iterations and the CPU time.

'°°1o“’maxl

l
|

Z ZzZ ZE Z X
1

i@
——— = 32
JR— = 32 CSMG
-8 \\"'"::':r’ -
1 1 S
5 10 15

Number of iterations

N
N
N N
A
—_——— N=232 \
— . N =32 CSMG NN
~u
i | ]
3 10 15

Number of iterations

FIG. 5. The L norms of the differences of i between two successive
iterations of Example 3: (a}e=0.2; (b}e=1.
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TABLE III

The L, and L, Error Norms of Example 3 after Nine Iterations
ona 33x33x33Grid

€ Present method Spectral multigrid method
L, 0.2 1584 x10°" 1.850 % 10~
L 0.2 1422 x 10712 9425 x 107
L, 1.0 411510~ 4.032x 107
L. 1.0 1819 x 10~ 2.580x10-%
CPU (s} 3502 157.81

6. DISCUSSION

6.1. The Convergence Rate

From Figs. 2 and 4 we see that for small N (<8)as ¥
increases, the spectral radius decreases. When N> §, the
spectral radius essentially reaches an asymptotic value. For
the 1D problem, Example 1, the asymptotic spectral radius
i5 0.0325 for e = 0.2 and 0,125 for ¢ = 1. For the 2D probiem,
Example 2, the asymptotic spectral radius is 00335 for
£¢=0.2 and 0.120 for £ = 1. We have not computed the spec-
tral radius for the 3D problem. From Figs. 1-5 we expect
that the spectral radius for the 3D problem will be slightly
smaller than that for the 2D problem. From Figs. 1, 3, and
5 we see that, unlike most iterative methods, the con-
vergence rate of the present method does not deteriorate as
N increases. This is consistent with the spectral radius
discussion above. When the dimension of the problem
increases, the convergence rate improves slightly.

In Examples 1-3 the constant £ measures the departure of
the equations from the strictly Poisson’s form. The con-
vergence rate depends on the values of ¢ If e=0, the
problems become the exact Poisson’s equation. Thus, no
iterations are required. When ¢ increases the convergence
rate deteriorates. This can be seen by comparing the results
for ¢=0.2 and ¢ = 1.0 in Figs. 1--5 and Tables [-III.

In Figs. 1, 3, and 5, the convergence curves for N =16 and
N = 32 are almost identical. This is due to the almost identi-
cal spectral radius. When N =4 all the eigenvalues of the
iteration matrix are real. In all three examples the con-
vergence curves for N =4 are nearly straight lines. The
wave-like convergence curves for N =8 are presumably due
to the dominant complex eigenvalues of the iteration
matrix. When N=16 and 32, because there are many
closely distributed complex eigenvalues, this phenomena is
not as obvious as the N =8 cases.

6.2. Comparison with the Spectral Multigrid Method

In Figs. 1, 3, and 3, the solid lines on the top show the L
norms of the differences of u between two successive itera-
tions obtained by the spectral multigrid methods presented
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by Zang et al. [12] on the N =32 grid. We see that the con-
vergence rate of the present method is much better than that
of the spectral multigrid method. In Tables I-111, after nine
iterations the error norms of the present method are about
5-8 orders better than those of the spectral multigrid
method. The speed of the present method is also superior to
the spectral multigrid method. For 2D and 3D problems,
the CPU time of the present method is less than one-third
of that of the spectral multigrid method for the same num-
ber of iterations and on the same grid. To obtain the same
accuracy, the CPU time of the present method is about one-
tenth of the Chebyshev spectral multigrid method. Because
the problem is solved on a single grid, the programming for
the present method is much simpler than that for the
spectral multigrid method, especiaily for 3D probiems.

From the derivation in Section 2, the new method
requires that Vo exist in the whole domain. For the 1D
problem, to ensure that the iteration process converges,
from (49) the maximum absolute value of 4 In a/dx should
be less than n. When these two conditions cannot be
satisfied, the new method will not work. In these cases, we
may divide the whole domain into a number of subdomains
so that in each subdomain Vo exists and d In ¢/dx < n. Then
we can solve the problem by the multidomain Chebyshev
spectral method [15]. In each subdomain the problem can
be solved by the new iterative method.

The Chebyshev spectral multigrid method will be supe-
rior in cases of a strong discontinucus coelficient, provided
the interpolation operator is constructed to maintain
continuity of ¢ Vi [9].

6.3. Computational Operations

Suppose that d represents the dimension of the problem,
In each iteration the present algorithm requires the
solution of a forward Poisson’s problem. This requires
2d(N ~ 1)¥*! 4 d(N — 1) operations (cne addition and one
multiplication count for one operation). The evaluation of
Vu requires d(N —1)“*' operations. The factorization of
matrix d () requires 4(N — 1) operations. For 1D problems
the factorization may be too expensive. For 2D and 3D
problems the cost of factorization process is refatively small.
The total operation count for 2D and 3D problems is of
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O(N4*+1). In practical computation we can build a lookup
table to store the factorized matrices and the eigenvalues for
commonly used N’s.
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